Structural requirements of tRNALys for its import into yeast mitochondria.
نویسندگان
چکیده
In the yeast Saccharomyces cerevisiae, one of the two cytoplasmic lysine tRNAs, tRNACUULys, is partially associated with the mitochondrial matrix. Mitochondrial import of this tRNA requires binding to the precursor of the mitochondrial lysyl-tRNA synthetase, pre-MSK, and aminoacylation by the cytoplasmic lysyl-tRNA synthetase, KRS, appears to be a prerequisite for this binding. The second lysine isoacceptor tRNAmnmLys5s2UUU [where 5-[(methylamino)-methyl]-2-thiouridine is mnm5s2U] is exclusively localized in the cytoplasm. To study import determinants within the tRNACUULys molecule, we introduced a panel of replacements in the original sequences of the imported and nonimported lysine tRNAs that correspond to domains or individual residues that differ between these two isoacceptors. The mutant transcripts were tested for import, aminoacylation, and binding to pre-MSK. Import and aminoacylation efficiencies correlate well for the majority of mutant transcripts. However, some poorly aminoacylated transcripts were rather efficiently imported. Surprisingly, these transcripts retained binding capacity to pre-MSK. In fact, all imported transcripts retained pre-MSK binding capacity but nonimported versions did not, suggesting that this binding, rather than aminoacylation, is essential for import. Substitution of the anticodon arm of tRNACUULys with that of tRNAmnmLys5s2UUU abolished import without affecting aminoacylation. A version of tRNAmnmLys5s2UUU with an anticodon CUU was efficiently imported in vitro and was also found to be imported in vivo. This implies that the anticodon arm, especially position 34, is important for recognition by the import machinery. A nicked tRNACUULys transcript is still imported but its import requires reannealing of the two tRNA moieties, which implies that tRNACUULys is imported as a folded molecule.
منابع مشابه
Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells.
Mitochondrial DNA (mtDNA) mutations are an important cause of human disease for which there is no efficient treatment. Our aim was to determine whether the A8344G mitochondrial tRNA(Lys) mutation, which can cause the MERRF (myoclonic epilepsy with ragged-red fibers) syndrome, could be complemented by targeting tRNAs into mitochondria from the cytosol. Import of small RNAs into mitochondria has ...
متن کاملInduced tRNA Import into Human Mitochondria: Implication of a Host Aminoacyl-tRNA-Synthetase
In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNA(Lys)(CUU) into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with...
متن کاملProtein import into mitochondria in a homologous yeast in vitro system.
To study the import of proteins into mitochondria we developed a homologous in vitro system in which mitochondria and cell-free translation extract are both derived from the yeast Saccharomyces cerevisiae. This system allows the synthesis of precursor proteins in the presence of isolated mitochondria and offers a means of analyzing yeast mutants defective in mitochondrial protein import. The in...
متن کاملCytosolic yeast tRNA(His) is covalently modified when imported into mitochondria of Trypanosoma brucei.
The mitochondrial genome of Trypanosoma brucei does not encode any tRNAs. Instead, mitochondrial tRNAs are synthesized in the nucleus and subsequently imported into mitochondria. The great majority of mitochondrial tRNAs have cytosolic counterparts showing identical primary sequences. The only difference found between mitochondrial and cytosolic isotypes of the tRNAs are mitochondria-specific n...
متن کاملThe ins and outs of tRNA transport.
Transfer RNAs (tRNAs) are involved in many cellular functions distributed throughout the cellular space. In addition to their role in protein translation, these molecules are engaged in tasks as diverse as the regulation of gene expression, amino-acid synthesis, protein degradation, cell-wall synthesis, porphyrin bio synthesis, priming of replication, RNA interference and the transport of macro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 6 شماره
صفحات -
تاریخ انتشار 1998